Katarzyna Filipowicz , Robert Syrek , Tomasz Tokarski
ARTICLE

(Polish) PDF

ABSTRACT

The aim of the study is a comparative analysis of growth paths of basic macroeconomic variables (labor productivity and capital labor ratio) in the Solow growth model with three alternative assumptions about the trajectory of the number of workers. There are standard trajectory (the number of workers increasing exponentially), logistics trajectory (the number of workers is growing to the certain asymptote) and so-called Gaussian trajectory (the number of workers is similar to the density function of Gaussian distribution).
In the result, nonstandard growth paths of macroeconomic variables are defined by certain functions compose with hypergeometric function and Gauss error function (so called Gaussian special functions). Moreover, labor productivity and capital labor ratio for logistic trajectory is growing to asymptote, which is located higher than in the original Solow model. The labor productivity and capital labor ratio for Gaussian trajectory of the number of workers increase to infinity.

KEYWORDS

growth rate of the number of workers, equilibrium of Solow model, Gaussian special functions

REFERENCES

Bianca C., Guerrini L., (2014), Existence of Limit Cycles in the Solow Model with Delayed-Logistic Population Growth, Scientific World Journal, 2014.

Boucekkine R., Ruiz-Tamarit J. R., (2004), Special Functions for the Study of Economic Dynamics: The Case of the Lucas-Uzawa Model, CORE Discussion Paper, 84, http://dx.doi.org/10.2139/ssrn.688904.

Boucekkine R., Ruiz-Tamarit J. R., (2008), Special Functions for the Study of Economic Dynamics: The Case of the Lucas-Uzawa Model, Journal of Mathematical Economics, 44, 33–54.

Bucci A., Guerrini L., (2009), Transitional Dynamics in the Solow-Swan Growth Model with AK Technology and Logistic Population Change, The B.A. Journal of Macroeconomics, 9, 1–17.

Cattani E., (2006), Three Lectures on Hypergeometric Functions, Department of Mathematics and Statistics, University of Massachusetts. http://people.math.umass.edu/~cattani/hypergeom_lectures.pdf.

Cobb C. W., Douglas P. H., (1928), A Theory of Production, American Economic Review, 18, 139–165.

Ferrara M., Guerrini L., (2009), The Ramsey Model with Logistic Population Growth Rate and Benthamite Felicity Function Revisited, WSEAS Transaction on Mathematics, 8, 97–106.

Filipowicz K., Tokarski T., (2015), Dwubiegunowy model wzrostu gospodarczego z przepływami inwestycyjnymi, Studia Prawno-Ekonomiczne, 96, 197–221.

Filipowicz K., Wisła R., Tokarski T., (2015), Produktywność kapitału a inwestycje zagraniczne w dwubiegunowym modelu wzrostu gospodarczego – analiza konwergencji, Przegląd Statystyczny, 62 (1), 5–28.

Guerrini L., (2006), The Solow-Swan Model with the Bounded Population Growth Rate, Journal of Mathematical Economics, 42, 14–21.

Guerrini L., (2010a), A Closed Form Solution to the Ramsey Model with Logistic Population Growth, Economic Modelling, 27, 1178–1182.

Guerrini L., (2010b), The Ramsey Model with a Bounded Population Growth Rate, Journal of Macroeconomics, 32, 872–878.

Guerrini L., (2010c), Logistic Population Change and the Mankiw-Romer-Weil Model, Applied Sciences, 12, 96–101.

Korn G. A., Korn T. M., (1983), Matematyka dla pracowników naukowych i inżynierów, część 1, PWN, Warszawa.

Krawiec A., Szydłowski M., (2002), Własności dynamiki modeli nowej teorii wzrostu, Przegląd Statystyczny, 48 (1), 17–24.

Mankiw N. G., Romer D., Weil D. N., (1992), A Contribution to the Empirics of Economic Growth, Quarterly Journal of Economics, 107 (2), 407–437.

Nonneman W., Vanhoudt P., (1996), A Further Augmentation of the Solow Model and the Empirics of Economic Growth for the OECD Countries, Quarterly Journal of Economics, 111 (3), 943–953.

Opyrchał L., (2014), Funkcja niezawodności i czas bezawaryjnej pracy odpowiadający liniowej intensywności uszkodzeń, Czasopismo inżynierii lądowej, środowiska i architektury, 31 (61), 173–182.

Pindyck R. S., Rubinfeld D. L., (1991), Econometric Models and Economic Forecast, McGraw-Hills, New York etc.

Solow R. M., (1956), A Contribution to the Theory of Economic Growth, Quarterly Journal of Economics, 70 (1), 65–94.

Solow R. M., (1957), Technical Change and the Aggregate Production Function, Review of Economics and Statistics, 39, 312–320.

Tokarski T., (2011), Ekonomia matematyczna. Modele makroekonomiczne, PWE, Warszawa.

Zawadzki H., (2007), Model Solowa-Swana ze zmienną stopą wzrostu populacji, Prace i Materiały Wydziału Zarządzania Uniwersytetu Gdańskiego, 5, 213–219.

Zawadzki H., (2015), Analiza dynamiki modeli wzrostu gospodarczego za pomocą środowiska obliczeniowego Mathematica, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Krakowie, 4/940, 59–69.

Back to top
© 2019–2022 Copyright by Statistics Poland, some rights reserved. Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0